Step of Proof: member-exists2
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
member-exists2
:
T
:Type,
L
:(
T
List). (
x
:
T
. (
x
L
))
(0 < ||
L
||)
latex
by
InteriorProof
((((UnivCD)
THENM (((RWO "member-exists" 0)
THENM (RWO "length_of_not_nil" 0))
THENM (RWO "length_
))
)
T
CollapseTHEN (Auto
))
latex
TC
.
Definitions
x
:
A
.
B
(
x
)
,
(
x
l
)
,
#$n
,
||
as
||
,
A
,
s
=
t
,
x
:
A
.
B
(
x
)
,
type
List
,
Type
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
P
Q
,
P
Q
,
x
:
A
B
(
x
)
,
a
<
b
,
i
j
,
A
B
Lemmas
l
member
wf
,
member-exists
,
not
wf
,
iff
functionality
wrt
iff
,
length
of
not
nil
,
iff
wf
,
rev
implies
wf
,
ge
wf
origin